skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Changder, Narayan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coalition structure generation (CSG), i.e. the problem of optimally partitioning a set of agents into coalitions to maximize social welfare, is a fundamental computational problem in multiagent systems. This problem is important for many applications where small run times are necessary, including transportation and disaster response. In this paper, we develop SALDAE, a multiagent path finding algorithm for CSG that operates on a graph of coalition structures. Our algorithm utilizes a variety of heuristics and strategies to perform the search and guide it. It is an anytime algorithm that can handle large problems with hundreds and thousands of agents. We show empirically on nine standard value distributions, including disaster response and electric vehicle allocation benchmarks, that our algorithm enables a rapid finding of high-quality solutions and compares favorably with other state-of-the-art methods. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. Coalition formation is a key capability in multi-agent systems. An important problem in coalition formation is coalition structure generation: partitioning agents into coalitions to optimize the social welfare. This is a challenging problem that has been the subject of active research for the past three decades. In this paper, we present a novel algorithm, SMART, for the problem based on a hybridization of three innovative techniques. Two of these techniques are based on dynamic programming, where we show a powerful connection between the coalitions selected for evaluation and the performance of the algorithms. These algorithms use offline phases to optimize the choice of coalitions to evaluate. The third one uses branch-and-bound and integer partition graph search to explore the solution space. Our techniques bring a new way of approaching the problem and a new level of precision to the field. In experiments over several common value distributions, we show that the hybridization of these techniques in SMART is faster than the fastest prior algorithms (ODP-IP, BOSS) in generating optimal solutions across all the value distributions. 
    more » « less